
Public

SMART CONTRACT AUDIT REPORT

for

Neural Tensor Dynamics (NTD)

Prepared By: Xiaomi Huang

PeckShield
April 1, 2024

1/20 PeckShield Audit Report #: 2024-106

contact@peckshield.com

Public

Document Properties

Client NTD
Title Smart Contract Audit Report
Target NTD
Version 1.0
Author Xuxian Jiang
Auditors Jason Shen, Xuxian Jiang
Reviewed by Xiaomi Huang
Approved by Xuxian Jiang
Classification Public

Version Info

Version Date Author(s) Description
1.0 April 1, 2024 Xuxian Jiang Final Release
1.0-rc March 28, 2024 Xuxian Jiang Release Candidate

Contact

For more information about this document and its contents, please contact PeckShield Inc.

Name Xiaomi Huang
Phone +86 183 5897 7782
Email contact@peckshield.com

2/20 PeckShield Audit Report #: 2024-106

Public

Contents

1 Introduction 4
1.1 About NTD . 4
1.2 About PeckShield . 5
1.3 Methodology . 5
1.4 Disclaimer . 7

2 Findings 9
2.1 Summary . 9
2.2 Key Findings . 10

3 Detailed Results 11
3.1 Improved Constructor/Initialization Logic in NTD 11
3.2 Simplified requestUnstake() Logic in NtdTAO . 12
3.3 Suggested Adherence of Checks-Effects-Interactions in ntdTAO 14
3.4 Trust Issue Of Admin Keys . 16

4 Conclusion 18

References 19

3/20 PeckShield Audit Report #: 2024-106

Public

1 | Introduction

Given the opportunity to review the design document and related smart contract source code of the
Neural Tensor Dynamics (NTD) protocol, we outline in the report our systematic approach to evaluate
potential security issues in the smart contract implementation, expose possible semantic inconsis-
tencies between smart contract code and design document, and provide additional suggestions or
recommendations for improvement. Our results show that the given version of smart contracts can
be further improved due to the presence of several issues related to either security or performance.
This document outlines our audit results.

1.1 About NTD

NTD utilizes Bittensor’s decentralized AI network and marks a new milestone in the world of decentralized
finance (DeFi). The platform gives users the ability to explore the DeFi ecosystem by offering a wide
range of solutions specifically designed to streamline participation, maximize returns, and democra-
tize access to financial innovation. NTD is unique in that it offers high-yield staking options, advanced
AI-powered applications, quality validator services, which collectively aim to lead the DeFi industry
towards a safer, friendlier, and more prosperous one. The basic information of NTD is as follows:

Table 1.1: Basic Information of NTD

Item Description
Target NTD
Type EVM Smart Contract

Language Solidity
Audit Method Whitebox

Latest Audit Report April 1, 2024

In the following, we show the audited contracts deployed at the Sepolia testnet with the following
address:

• https://sepolia.etherscan.io/address/0x41239ca3bdab2d5c903d75e2f5bde06c0727d8f8#code

4/20 PeckShield Audit Report #: 2024-106

https://sepolia.etherscan.io/address/0x41239ca3bdab2d5c903d75e2f5bde06c0727d8f8

Public

• https://sepolia.etherscan.io/address/0x593c1a2AcdB0d03aA847Fb82646ac8109FC19A83#code

And here are the final revised contracts after all fixes have been checked in :

• https://sepolia.etherscan.io/address/0xca0e3c8e8d75a2b2cb67c1ee3f1b330cb0c6c821#code

• https://sepolia.etherscan.io/address/0x5786ee743e67044dfa144fff2f690f03b940cbdd#code

1.2 About PeckShield

PeckShield Inc. [11] is a leading blockchain security company with the goal of elevating the secu-
rity, privacy, and usability of current blockchain ecosystems by offering top-notch, industry-leading
services and products (including the service of smart contract auditing). We are reachable at Telegram
(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

Table 1.2: Vulnerability Severity Classification

Im
pa
ct

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

1.3 Methodology

To standardize the evaluation, we define the following terminology based on OWASP Risk Rating
Methodology [10]:

• Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

• Impact measures the technical loss and business damage of a successful attack;

• Severity demonstrates the overall criticality of the risk.

5/20 PeckShield Audit Report #: 2024-106

https://sepolia.etherscan.io/address/0x593c1a2AcdB0d03aA847Fb82646ac8109FC19A83
https://sepolia.etherscan.io/address/0xca0e3c8e8d75a2b2cb67c1ee3f1b330cb0c6c821
https://sepolia.etherscan.io/address/0x5786ee743e67044dfa144fff2f690f03b940cbdd
https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com

Public

Table 1.3: The Full List of Check Items

Category Check Item

Basic Coding Bugs

Constructor Mismatch
Ownership Takeover

Redundant Fallback Function
Overflows & Underflows

Reentrancy
Money-Giving Bug

Blackhole
Unauthorized Self-Destruct

Revert DoS
Unchecked External Call

Gasless Send
Send Instead Of Transfer

Costly Loop
(Unsafe) Use Of Untrusted Libraries
(Unsafe) Use Of Predictable Variables
Transaction Ordering Dependence

Deprecated Uses
Semantic Consistency Checks Semantic Consistency Checks

Advanced DeFi Scrutiny

Business Logics Review
Functionality Checks

Authentication Management
Access Control & Authorization

Oracle Security
Digital Asset Escrow
Kill-Switch Mechanism

Operation Trails & Event Generation
ERC20 Idiosyncrasies Handling
Frontend-Contract Integration

Deployment Consistency
Holistic Risk Management

Additional Recommendations

Avoiding Use of Variadic Byte Array
Using Fixed Compiler Version
Making Visibility Level Explicit
Making Type Inference Explicit

Adhering To Function Declaration Strictly
Following Other Best Practices

6/20 PeckShield Audit Report #: 2024-106

Public

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact and can be classified into four
categories accordingly, i.e., Critical, High, Medium, Low shown in Table 1.2.

To evaluate the risk, we go through a list of check items and each would be labeled with
a severity category. For one check item, if our tool or analysis does not identify any issue, the
contract is considered safe regarding the check item. For any discovered issue, we might further
deploy contracts on our private testnet and run tests to confirm the findings. If necessary, we would
additionally build a PoC to demonstrate the possibility of exploitation. The concrete list of check
items is shown in Table 1.3.

In particular, we perform the audit according to the following procedure:

• Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static
code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues
found by our tool.

• Semantic Consistency Checks: We then manually check the logic of implemented smart con-
tracts and compare with the description in the white paper.

• Advanced DeFi Scrutiny: We further review business logics, examine system operations, and
place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

• Additional Recommendations: We also provide additional suggestions regarding the coding and
development of smart contracts from the perspective of proven programming practices.

To better describe each issue we identified, we categorize the findings with Common Weakness
Enumeration (CWE-699) [9], which is a community-developed list of software weakness types to
better delineate and organize weaknesses around concepts frequently encountered in software devel-
opment. Though some categories used in CWE-699 may not be relevant in smart contracts, we use
the CWE categories in Table 1.4 to classify our findings.

1.4 Disclaimer

Note that this security audit is not designed to replace functional tests required before any software
release, and does not give any warranties on finding all possible security issues of the given smart
contract(s) or blockchain software, i.e., the evaluation result does not guarantee the nonexistence
of any further findings of security issues. As one audit-based assessment cannot be considered
comprehensive, we always recommend proceeding with several independent audits and a public bug
bounty program to ensure the security of smart contract(s). Last but not least, this security audit
should not be used as investment advice.

7/20 PeckShield Audit Report #: 2024-106

Public

Table 1.4: Common Weakness Enumeration (CWE) Classifications Used in This Audit

Category Summary
Configuration Weaknesses in this category are typically introduced during

the configuration of the software.
Data Processing Issues Weaknesses in this category are typically found in functional-

ity that processes data.
Numeric Errors Weaknesses in this category are related to improper calcula-

tion or conversion of numbers.
Security Features Weaknesses in this category are concerned with topics like

authentication, access control, confidentiality, cryptography,
and privilege management. (Software security is not security
software.)

Time and State Weaknesses in this category are related to the improper man-
agement of time and state in an environment that supports
simultaneous or near-simultaneous computation by multiple
systems, processes, or threads.

Error Conditions,
Return Values,
Status Codes

Weaknesses in this category include weaknesses that occur if
a function does not generate the correct return/status code,
or if the application does not handle all possible return/status
codes that could be generated by a function.

Resource Management Weaknesses in this category are related to improper manage-
ment of system resources.

Behavioral Issues Weaknesses in this category are related to unexpected behav-
iors from code that an application uses.

Business Logics Weaknesses in this category identify some of the underlying
problems that commonly allow attackers to manipulate the
business logic of an application. Errors in business logic can
be devastating to an entire application.

Initialization and Cleanup Weaknesses in this category occur in behaviors that are used
for initialization and breakdown.

Arguments and Parameters Weaknesses in this category are related to improper use of
arguments or parameters within function calls.

Expression Issues Weaknesses in this category are related to incorrectly written
expressions within code.

Coding Practices Weaknesses in this category are related to coding practices
that are deemed unsafe and increase the chances that an ex-
ploitable vulnerability will be present in the application. They
may not directly introduce a vulnerability, but indicate the
product has not been carefully developed or maintained.

8/20 PeckShield Audit Report #: 2024-106

Public

2 | Findings

2.1 Summary

Here is a summary of our findings after analyzing the NTD implementation. During the first phase of
our audit, we study the smart contract source code and run our in-house static code analyzer through
the codebase. The purpose here is to statically identify known coding bugs, and then manually verify
(reject or confirm) issues reported by our tool. We further manually review business logic, examine
system operations, and place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or
bugs.

Severity # of Findings
Critical 0

High 0

Medium 1

Low 2

Informational 1

Total 4

We have so far identified a list of potential issues: some of them involve subtle corner cases
that might not be previously thought of, while others refer to unusual interactions among multiple
contracts. For each uncovered issue, we have therefore developed test cases for reasoning, reproduc-
tion, and/or verification. After further analysis and internal discussion, we determined a few issues
of varying severities that need to be brought up and paid more attention to, which are categorized in
the above table. More information can be found in the next subsection, and the detailed discussions
of each of them are in Section 3.

9/20 PeckShield Audit Report #: 2024-106

Public

2.2 Key Findings

Overall, these smart contracts are well-designed and engineered, though the implementation can
be improved by resolving the identified issues (shown in Table 2.1), including 1 medium-severity
vulnerability, 2 low-severity vulnerabilities, and 1 informational recommendation.

Table 2.1: Key NTD Audit Findings

ID Severity Title Category Status
PVE-001 Low Improved Constructor/Initialization

Logic in NTD
Coding Practices Resolved

PVE-002 Low Simplified requestUnstake() Logic in
NtdTAO

Business Logic Resolved

PVE-003 Informational Suggested Adherence of Checks-
Effects-Interactions in NtdTAO

Time And State Resolved

PVE-004 Medium Trust Issue Of Admin Keys Security Features Mitigated

Beside the identified issues, we emphasize that for any user-facing applications and services, it is
always important to develop necessary risk-control mechanisms and make contingency plans, which
may need to be exercised before the mainnet deployment. The risk-control mechanisms should kick
in at the very moment when the contracts are being deployed on mainnet. Please refer to Section 3
for details.

10/20 PeckShield Audit Report #: 2024-106

Public

3 | Detailed Results

3.1 Improved Constructor/Initialization Logic in NTD

• ID: PVE-001

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: NtdTAO

• Category: Coding Practices [6]

• CWE subcategory: CWE-1126 [1]

Description

To facilitate possible future upgrade, the NtdTAO contract is instantiated as a proxy with actual logic
contracts in the backend. While examining the related contract construction and initialization logic,
we notice current construction can be improved.

In the following, we shows its initialization routine. We notice its constructor does not have any
payload. With that, it can be improved by adding the following statement, i.e., _disableInitializers
();. Note this statement is called in the logic contract where the initializer is locked. Therefore any
user will not able to call the initialize() function in the state of the logic contract and perform any
malicious activity. Note that the proxy contract state will still be able to call this function since the
constructor does not effect the state of the proxy contract.

219 function initialize(address initialOwner , uint256 initialSupply) public initializer {
220 require(initialOwner != address (0), "Owner cannot be null");
221 require(initialSupply > 0, "Initial supply must be more than 0");
222 __ERC20_init("NTD Staked TAO", "ntdTAO");
223 __Ownable_init(initialOwner);
224 __AccessControl_init ();
225 __ReentrancyGuard_init ();
226 _setRoleAdmin(DEFAULT_ADMIN_ROLE , DEFAULT_ADMIN_ROLE);
227 _transferOwnership(initialOwner);
228 _grantRole(DEFAULT_ADMIN_ROLE , initialOwner);
229 maxSupply = initialSupply;
230 }

Listing 3.1: NtdTAO::initialize()

11/20 PeckShield Audit Report #: 2024-106

Public

Moreover, the above initialize() routine can be improved by also calling _setRoleAdmin() for all
supported roles, including PAUSE_ROLE, EXCHANGE_UPDATE_ROLE, MANAGE_STAKING_CONFIG_ROLE, TOKEN_SAFE_PULL_ROLE
, and APPROVE_WITHDRAWAL_ROLE.

Recommendation Improve the above-mentioned constructor routine in the NtdTAO contract.

Status This issue has been fixed by following the above suggestion.

3.2 Simplified requestUnstake() Logic in NtdTAO

• ID: PVE-002

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: NtdTAO

• Category: Business Logic [7]

• CWE subcategory: CWE-770 [4]

Description

The NtdTAO contract is in essence a staking contract that allows for the exchange between wTAO

and ntdTAO. While examining this staking contract, we notice a number of helper routines can be
simplified.

For example, the requestUnstake() routine is used by users to request for unstaking. Internally, the
array length of unstakeRequests[msg.sender] has been retrieved twice: line 578 and 612, respectively.
Apparently, the second time can be avoided as we can simply re-use the first-time result.

576 function requestUnstake(uint256 wntdTAOAmt) public payable nonReentrant checkPaused {
577 ...
578 uint256 length = unstakeRequests[msg.sender]. length;
579 bool added = false;
580 // Loop through the list of existing unstake requests
581 for (uint256 i = 0; i < length; i++) {
582 uint256 currAmt = unstakeRequests[msg.sender][i]. amount;
583 if (currAmt > 0) {
584 continue;
585 } else {
586 // If the curr amt is zero , it means
587 // we can add the unstake request in this index
588 unstakeRequests[msg.sender][i] = UnstakeRequest ({
589 amount: wntdTAOAmt ,
590 taoAmt: outWTaoAmt ,
591 isReadyForUnstake: false ,
592 timestamp: block.timestamp ,
593 wrappedToken: wrappedToken
594 });
595 added = true;
596 emit UserUnstakeRequested(

12/20 PeckShield Audit Report #: 2024-106

Public

597 msg.sender ,
598 i,
599 block.timestamp ,
600 wntdTAOAmt ,
601 outWTaoAmt ,
602 wrappedToken
603);
604 break;
605 }
606 }
607
608 // If we have not added the unstake request , it means that
609 // we need to push a new unstake request into the array
610 if (!added) {
611 require(
612 unstakeRequests[msg.sender]. length < maxUnstakeRequests ,
613 "Maximum unstake requests exceeded"
614);
615 unstakeRequests[msg.sender].push(
616 UnstakeRequest ({
617 amount: wntdTAOAmt ,
618 taoAmt: outWTaoAmt ,
619 isReadyForUnstake: false ,
620 timestamp: block.timestamp ,
621 wrappedToken: wrappedToken
622 })
623);
624 emit UserUnstakeRequested(
625 msg.sender ,
626 length ,
627 block.timestamp ,
628 wntdTAOAmt ,
629 outWTaoAmt ,
630 wrappedToken
631
632);
633 }
634
635 // Perform burn
636 _burn(msg.sender , wntdTAOAmt);
637 // transfer the service fee to the withdrawal manager
638 // withdrawalManager have already been checked to be a non zero address
639 // in the guard condition at start of function
640 bool success = payable(withdrawalManager).send(serviceFee);
641 require(success , "Service fee transfer failed");
642 }

Listing 3.2: NtdTAO::requestUnstake()

Also, the approveMultipleUnstakes() routine is used by the withdrawal manager to approve user
requests for withdrawals. Internally, there are three for-loops, which can be optimized with only one
for-loop. In addition, the updateExchangeRate() and setLowerExchangeRateBound() routines can also

13/20 PeckShield Audit Report #: 2024-106

Public

be improved regarding current validation logic.

Recommendation Revisit the above-mentioned routine to simplify the logic or reduce gas
consumption.

Status The issue has been resolved by following the above suggestion.

3.3 Suggested Adherence of Checks-Effects-Interactions in
ntdTAO

• ID: PVE-003

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: NtdTAO

• Category: Time and State [8]

• CWE subcategory: CWE-663 [3]

Description

A common coding best practice in Solidity is the adherence of checks-effects-interactions principle.
This principle is effective in mitigating a serious attack vector known as re-entrancy. Via this
particular attack vector, a malicious contract can be reentering a vulnerable contract in a nested
manner. Specifically, it first calls a function in the vulnerable contract, but before the first instance
of the function call is finished, second call can be arranged to re-enter the vulnerable contract by
invoking functions that should only be executed once. This attack was part of several most prominent
hacks in Ethereum history, including the DAO [13] exploit, and the Uniswap/Lendf.Me hack [12].

We notice there is an occasion where the checks-effects-interactions principle is violated. Using
the ntdTAO as an example, the wrap() function (see the code snippet below) is provided to wrap
users’ wTAO tokens and get ntdTAO in return. However, the invocation of an external contract requires
extra care in avoiding the above re-entrancy. For example, the interaction with the external contract
(line 925) start before effecting the update on internal state (of batchTAOAmt), hence violating the
principle. Fortunately, the use of nonReentrant makes the re-entrancy impossible. From another per-
spective, once the checks-effects-interactions principle is enforced, the ues of nonReentrant becomes
redundant and can be removed.

885 function wrap(uint256 wtaoAmount) public nonReentrant checkPaused {
886 // Deposit cap amount
887 require(
888 maxDepositPerRequest >= wtaoAmount ,
889 "Deposit amount exceeds maximum"
890);
891

14/20 PeckShield Audit Report #: 2024-106

Public

892 string memory _nativeWalletReceiver = nativeWalletReceiver;
893 IERC20 _wrappedToken = IERC20(wrappedToken);
894 // Check that the nativeWalletReceiver is not an empty string
895 _checkValidFinneyWallet(_nativeWalletReceiver);
896 _requireNonZeroAddress(
897 address(_wrappedToken),
898 "wrappedToken address is invalid"
899);
900 require(
901 _wrappedToken.balanceOf(msg.sender) >= wtaoAmount ,
902 "Insufficient wTAO balance"
903);
904
905 // Check to ensure that the protocol vault address is not zero
906 _requireNonZeroAddress(
907 address(protocolVault),
908 "Protocol vault address cannot be 0"
909);
910
911 // Ensure that at least 0.125 TAO is being bridged
912 // based on the smart contract
913 require(wtaoAmount > minStakingAmt , "Does not meet minimum staking amount");
914
915
916 // Ensure that the wrap amount after free is more than 0
917 (uint256 wrapAmountAfterFee , uint256 feeAmt) = calculateAmtAfterFee(wtaoAmount);
918
919 uint256 wntdTAOAmount = getWntdTAObyWTAO(wrapAmountAfterFee);
920
921 // Perform token transfers
922 _mintWithSupplyCap(msg.sender , wntdTAOAmount);
923 _transferToVault(feeAmt);
924 uint256 amtToBridge = wrapAmountAfterFee + bridgingFee;
925 _transferToContract(amtToBridge);
926
927 // We add this to the total amount we would like to batch together.
928 batchTAOAmt += amtToBridge;
929 emit UserStake(msg.sender , block.timestamp , wtaoAmount , wntdTAOAmount);
930 }

Listing 3.3: ntdTAO::wrap()

Recommendation Revisit the above routine to ensure the adherence of the checks-effects-

interactions principle and make the re-entrancy impossible. After that, the nonReentrant modifier is
not necessary and can be removed.

Status The issue has been resolved by following the checks-effects-interactions principle.

15/20 PeckShield Audit Report #: 2024-106

Public

3.4 Trust Issue Of Admin Keys

• ID: PVE-004

• Severity: Medium

• Likelihood: Medium

• Impact: Medium

• Target: NtdTAO

• Category: Security Features [5]

• CWE subcategory: CWE-287 [2]

Description

In the NTD protocol, there is a privileged account (with the DEFAULT_ADMIN_ROLE role) that plays a
critical role in governing and regulating the protocol-wide operations (e.g., configuring various system
parameters and setting up staking/unstaking fee). In the following, we show the representative
functions potentially affected by the privilege of the privileged account.

161 function setServiceFee(uint256 _serviceFee) public hasManageStakingConfigRole {
162 require(_serviceFee <= 0.01 ether , "Service fee cannot be more than 0.01 ETH");
163 serviceFee = _serviceFee;
164 emit UpdateServiceFee(serviceFee);
165 }
166 ...
167 function setWithdrawalManager(address _withdrawalManager) public

hasManageStakingConfigRole {
168 require(_withdrawalManager != address (0), "Withdrawal manager cannot be null");
169 withdrawalManager = _withdrawalManager;
170 emit UpdateWithdrawalManager(withdrawalManager);
171 }
172 ...
173 function setProtocolVault(address _protocolVault) public hasManageStakingConfigRole {
174 require(_protocolVault != address (0), "Protocol vault cannot be null");
175 protocolVault = _protocolVault;
176 emit UpdateProtocolVault(protocolVault);
177 }
178 ...
179 function setMaxSupply(uint256 _maxSupply) public hasManageStakingConfigRole {
180 require(_maxSupply > totalSupply (), "Max supply must be greater than the current

total supply");
181 maxSupply = _maxSupply;
182 emit UpdateMaxSupply(maxSupply);
183 }
184 ...
185 function setMinStakingAmt(uint256 _minStakingAmt) public hasManageStakingConfigRole {
186 require(_minStakingAmt > bridgingFee , "Min staking amount must be more than bridging

fee");
187 minStakingAmt = _minStakingAmt;
188 emit UpdateMinStakingAmt(minStakingAmt);
189 }
190 ...
191 function setStakingFee(uint256 _stakingFee) public hasManageStakingConfigRole {

16/20 PeckShield Audit Report #: 2024-106

Public

192 // Staking fee cannot be equivalent to 2% staking fee. Max it can go is 19 (1.9%)
193 require(_stakingFee < 20, "Staking fee cannot be more than equal to 20");
194 stakingFee = _stakingFee;
195 emit UpdateStakingFee(stakingFee);
196 }
197 ...
198 function setBridgingFee(uint256 _bridgingFee) public hasManageStakingConfigRole {
199 require(_bridgingFee <= 0.2 gwei , "Bridging fee cannot be more than 0.2 TAO");
200 bridgingFee = _bridgingFee; // Assuming _bridgingFee is passed in mwei
201 emit UpdateBridgeFee(bridgingFee);
202 }
203 ...
204 function setMaxDepositPerRequest(uint256 _maxDepositPerRequest)
205 public
206 hasManageStakingConfigRole
207 {
208 require(_maxDepositPerRequest > 0, "Max deposit per request must be more than 0");
209 maxDepositPerRequest = _maxDepositPerRequest;
210 emit UpdateMaxDepositPerRequest(maxDepositPerRequest);
211 }

Listing 3.4: Example Privileged Operations in ntdTAO

We emphasize that the privilege assignment may be necessary and consistent with the protocol
design. However, it is worrisome if the privileged account is not governed by a DAO-like structure.
Note that a compromised account would allow the attacker to modify a number of sensitive system
parameters, which directly undermines the assumption of the protocol design.

Recommendation Promptly transfer the privileged account to the intended DAO-like governance
contract. All changed to privileged operations may need to be mediated with necessary timelocks.
Eventually, activate the normal on-chain community-based governance life-cycle and ensure the in-
tended trustless nature and high-quality distributed governance.

Status The issue has been confirmed and will be mitigated with the use of a multi-sig to
manage the privileged account.

17/20 PeckShield Audit Report #: 2024-106

Public

4 | Conclusion

In this audit, we have analyzed the design and implementation of NTD, which utilizes Bittensor’s
decentralized AI network and marks a new milestone in the world of decentralized finance (DeFi

). The platform gives users the ability to explore the DeFi ecosystem by offering a wide range of
solutions specifically designed to streamline participation, maximize returns, and democratize access
to financial innovation. NTD is unique in that it offers high-yield staking options, advanced AI-powered
applications, quality validator services, which collectively aim to lead the DeFi industry towards a
safer, friendlier, and more prosperous one. The current code base is well structured and neatly
organized. Those identified issues are promptly confirmed and addressed.

Meanwhile, we need to emphasize that smart contracts as a whole are still in an early, but exciting
stage of development. To improve this report, we greatly appreciate any constructive feedbacks or
suggestions, on our methodology, audit findings, or potential gaps in scope/coverage.

18/20 PeckShield Audit Report #: 2024-106

Public

References

[1] MITRE. CWE-1126: Declaration of Variable with Unnecessarily Wide Scope. https://cwe.

mitre.org/data/definitions/1126.html.

[2] MITRE. CWE-287: Improper Authentication. https://cwe.mitre.org/data/definitions/287.html.

[3] MITRE. CWE-663: Use of a Non-reentrant Function in a Concurrent Context. https://cwe.

mitre.org/data/definitions/663.html.

[4] MITRE. CWE-770: Allocation of Resources Without Limits or Throttling. https://cwe.mitre.

org/data/definitions/770.html.

[5] MITRE. CWE CATEGORY: 7PK - Security Features. https://cwe.mitre.org/data/definitions/

254.html.

[6] MITRE. CWE CATEGORY: Bad Coding Practices. https://cwe.mitre.org/data/definitions/

1006.html.

[7] MITRE. CWE CATEGORY: Business Logic Errors. https://cwe.mitre.org/data/definitions/

840.html.

[8] MITRE. CWE CATEGORY: Concurrency. https://cwe.mitre.org/data/definitions/557.html.

[9] MITRE. CWE VIEW: Development Concepts. https://cwe.mitre.org/data/definitions/699.

html.

19/20 PeckShield Audit Report #: 2024-106

https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/663.html
https://cwe.mitre.org/data/definitions/663.html
https://cwe.mitre.org/data/definitions/770.html
https://cwe.mitre.org/data/definitions/770.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/557.html
https://cwe.mitre.org/data/definitions/699.html
https://cwe.mitre.org/data/definitions/699.html

Public

[10] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP_Risk_

Rating_Methodology.

[11] PeckShield. PeckShield Inc. https://www.peckshield.com.

[12] PeckShield. Uniswap/Lendf.Me Hacks: Root Cause and Loss Analysis. https://medium.com/

@peckshield/uniswap-lendf-me-hacks-root-cause-and-loss-analysis-50f3263dcc09.

[13] David Siegel. Understanding The DAO Attack. https://www.coindesk.com/

understanding-dao-hack-journalists.

20/20 PeckShield Audit Report #: 2024-106

https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.peckshield.com
https://medium.com/@peckshield/uniswap-lendf-me-hacks-root-cause-and-loss-analysis-50f3263dcc09
https://medium.com/@peckshield/uniswap-lendf-me-hacks-root-cause-and-loss-analysis-50f3263dcc09
https://www.coindesk.com/understanding-dao-hack-journalists
https://www.coindesk.com/understanding-dao-hack-journalists

	Introduction
	About NTD
	About PeckShield
	Methodology
	Disclaimer

	Findings
	Summary
	Key Findings

	Detailed Results
	Improved Constructor/Initialization Logic in NTD
	Simplified requestUnstake() Logic in NtdTAO
	Suggested Adherence of Checks-Effects-Interactions in ntdTAO
	Trust Issue Of Admin Keys

	Conclusion
	References

